

condignum

Mit dem digitalen Zwilling zur sicheren Produktion

Matthias Eckhart (SBA Research & Universität Wien) 30.05.2022, Summit Industrie 4.0 Österreich

Mit Sicherheit in die vierte industrielle Revolution

Neue Technologien eröffnen neue Angriffswege

Robotik

Vergrößerte Angriffsfläche durch mehr Funktionalität

► Hohe Komplexität erschwert Absicherung

Abhängigkeit zu einigen wenigen Herstellern

Konnektivität & IoT

- Vergrößerte Angriffsfläche
- ▶ IoT-Geräte: Beliebte Angriffsziele
- Altsysteme werden internetfähig

Simulation

- Diebstahl wertvoller Modelle
- Missbrauch zur Malware-Entwicklung
- Gezielte Verfälschung der Ergebnisse

Big Data & Cloud

- Risiken durch Angriffe auf Cloud-Dienste
- ► Kontrollverlust über Daten
- Abhängigkeit zu Cloud-Anbieter

Künstliche Intelligenz

- ▶ Backdoors in Trainingsdaten
- Diebstahl der ML Modelle
- Rückgewinnung der Trainingsdaten

Additive Fertigung

- Sabotage der Design-Artefakte
- Diebstahl der Spezifikationen
- Angriffe auf die Supply Chain

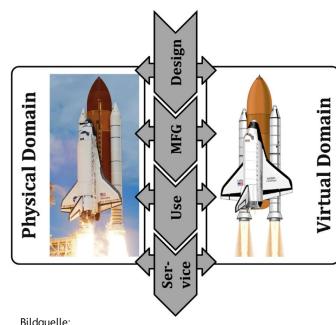
Matthias Eckhart (SBA Research)

Der digitale Zwilling

Die Anfänge

"A digital twin is an integrated [...] simulation of a [...] system that uses the best available physical models, sensor updates, [...] etc., to mirror the life of its [...] flying twin." (Shafto et al., 2010)

> M. Shafto et al, "Draft modeling, simulation, information technology & processing roadmap," Technology Area, vol. 11, 2010.


Ursprung

Das Konzept hat ihren Ursprung in der Raumfahrtindustrie (NASA).

Zweck

Digitale Zwillinge wurden zur Unterstützung bei Zertifizierungen und Missionen entwickelt.

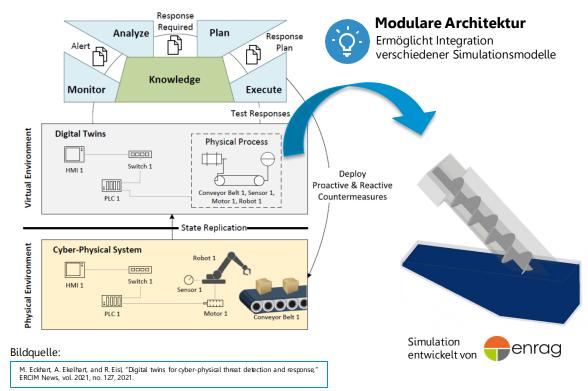
Bildquelle:

B. Schleich, N. Anwer, L. Mathieu, and S. Wartzack, "Shaping the digital twin for design and production engineering," CIRP Annals, vol. 66, no. 1, pp. 141-144, 2017, issn 0007-8506.

Der digitale Zwilling

Im Kontext von IT/OT Security

System-Emulator inkl. I/O Simulation


Netzwerk-Emulator

Simulation des physikalischen Prozesses

Synchronisation mit realem System

Aufbau und Anwendungen des Frameworks

In der Engineering- und Betriebsphase

Engineering Operation Basic & Detailed Engineering Cyber-Physical System On-Site Eng. Switch 1 HMI1 Commissioning PLC 1 Passive Data Collection Engineering Pote Data Sources Simulation & [0000] Emulation Knowledge Network Parsing & Semantic Lifting Framework Spec. **Digital Twins** Physical Process 0000 Generation Switch 1 Security Testing Conveyor Belt 1, Sensor Motor 1, Robot 1 Physical Process & I/O Simulation System Emulation & Simulation Network Stack Emulation

Synchronisation

Digitale Zwillinge spiegeln das Verhalten der realen Systeme zeitversetzt wider.

Security by Design

Engineering Artefakte

Engineering-Daten zur Erzeugung

Integration bestehender

digitaler Zwillinge.

Überprüfung der Sicherheit von Systemen bereits während der Entwicklungsphase.

Angriffserkennung

Abweichungen im Verhalten des digitalen Zwillings deuten potenziell auf einen Angriff oder Fehler hin.

Zusammenfassung und Ausblick

Mit dem digitalen Zwilling zur sicheren Produktion

Kernkomponenten

Verbund aus: Emulation der Systeme, des Netzwerk-Stacks und Simulation des physikalischen Prozesses.

Synchronisation

Digitale Zwillinge sollen das Verhalten ihrer physischen Gegenstücke widerspiegeln. Dies erfordert Synchronisationsmechanismen.

Engineering-Artefakte

Bestehende Engineering-Daten und Simulationsmodelle werden genutzt, um digitale Zwillinge zu erzeugen.

Anwendungen

Digitale Zwillinge können zur Angriffserkennung genutzt werden und ermöglichen das Testen potenzieller Gegenmaßnahmen.

Matthias Eckhart

SBA Research

Floragasse 7, 1040 Wien +43 664 448 34 35

meckhart@sba-research.org

■ Bundesministerium
Klimaschutz, Umwelt,
Energie, Mobilität,
Innovation und Technologie

